三種電解質(zhì)體系中鋰離子的遷移機(jī)理
鋰電池技術(shù)正在新能源的道路上飛速奔跑,現(xiàn)代社會對于鋰電池的比能量、安全性有了更加廣泛的關(guān)注。對于鋰電池而言,正負(fù)極材料、電解質(zhì)的革新是提高其性能的根本源泉。
直到目前為止,還沒有一款完全理想的、適合于鋰電池的電解質(zhì)。如今最常用的還是有機(jī)電解液,因?yàn)槠渚哂懈叩碾x子電導(dǎo)率和較寬的溫度使用范圍。由于其本身容易著火,引發(fā)安全事故,所以新型電解質(zhì)的開發(fā)勢在必行。開發(fā)新型電解質(zhì)需要一套可靠的理論來支持,但是由于電解液涉及了較多的影響因素(例如粘度,鹽濃度,溶解,離子締合和離子-溶劑相互作用)對于離子的遷移機(jī)制還不甚清楚。那么,在有機(jī)電解液、固態(tài)電解質(zhì)以及離子液體電解質(zhì)中,鋰離子是如何遷移的呢?
一、有機(jī)電解液
如圖1中所示,電解液在鋰電池內(nèi)部起到一個載體作用,其在正負(fù)極材料之間為離子傳輸提供了傳輸路徑。簡單以充電過程舉例,Li+從正極活性物質(zhì)中脫出,正極固相顆粒表面Li+濃度降低,使顆粒內(nèi)部與表面間出現(xiàn)濃度差異,致使Li+產(chǎn)生顆粒由內(nèi)向外的固相擴(kuò)散。同時由顆粒表面電化學(xué)反應(yīng)生成的Li+進(jìn)入電解液中,溶液相中界面區(qū)域的局部濃度提高,使溶液相內(nèi)部產(chǎn)生濃度差異,導(dǎo)致Li+產(chǎn)生從內(nèi)向外的擴(kuò)散與遷移。而在負(fù)極區(qū)域,由于負(fù)極顆粒與電解液中的Li+發(fā)生電化學(xué)反應(yīng),消耗了溶液相中的Li+,使溶液相局部Li+濃度降低,產(chǎn)生濃度差異,導(dǎo)致Li+在溶液相中產(chǎn)生由外向內(nèi)的擴(kuò)散與遷移。
同時在負(fù)極顆粒表面發(fā)生電化學(xué)反應(yīng),嵌入Li+,使顆粒內(nèi)部出現(xiàn)濃度差異,導(dǎo)致Li+在顆粒內(nèi)部產(chǎn)生從外向內(nèi)的固相擴(kuò)散。在隔膜處,由于正極與負(fù)極過程導(dǎo)致的濃度差異,導(dǎo)致該區(qū)域的Li+產(chǎn)生從正極到負(fù)極的擴(kuò)散與遷移,放電過程則與上述過程相反。由上述過程可知,鋰電池的正常、高效運(yùn)轉(zhuǎn),主要決定于鋰離子在電池內(nèi)部的遷移情況。鋰離子的遷移情況受到電解液的性質(zhì)的制約,電解液的性質(zhì)主要是由以下要素影響的。
1.鋰鹽溶解
電解液由溶質(zhì)和溶劑組成,溶質(zhì)一般選用LiPF6溶劑一般選用多種有機(jī)溶劑相組合的液體。當(dāng)把LiPF6溶入溶劑中后,就形成了鋰離子和PF6−負(fù)離子。鋰鹽的溶解與溶劑的介電常數(shù)密切相關(guān),介電常數(shù)越大對鋰鹽的溶解能力就越強(qiáng)。當(dāng)鋰離子被溶劑分子完全包圍后,負(fù)離子對鋰離子的影響減弱,就發(fā)生了所謂的溶解。對于鋰鹽而言,陰離子越大越有利于電解液的離子導(dǎo)電性及其自身的溶解,這是因?yàn)殛庪x子越大,越容易分散其負(fù)電荷并能防止陽離子的配對。
2.電解液粘度
電解液的粘度會對離子的移動產(chǎn)生重要影響,粘度越低越有利于離子的移動。
正如以上所述的,鋰離子在電極液的溶解作用和粘度影響下進(jìn)行運(yùn)輸和轉(zhuǎn)移。公式1中t+為運(yùn)輸數(shù)目,i+和i-分別代表陽離子和陰離子所形成的電流,it代表總電流,u±代表陰陽離子的移動性,D±代表陰陽離子的擴(kuò)散系數(shù)。
實(shí)際上,離子阻力不僅跟陰陽離子有關(guān),也跟溶劑有一定關(guān)系。離子遷移數(shù)目可以用以公式2來表示:
其中,TLi++代表鋰離子遷移數(shù)目,△V是極化電壓,I(∞)是極化后的穩(wěn)態(tài)電流,Rb和Rct是體電阻和充電轉(zhuǎn)移電阻。
單相溶劑系統(tǒng)的電解液很難既有高的電導(dǎo)率又有低的粘度,因此常用的電解液溶劑采用多種溶劑復(fù)配的方式來配制,比如二元的電解液我們是這樣配制的m(鋰鹽)+(1-w)(溶劑A)+w(溶劑B),鋰鹽m單位一般是質(zhì)量摩爾濃度,mol/kg,w是溶劑的質(zhì)量分?jǐn)?shù)。對于單元電解液,并沒有可靠的理論來預(yù)測電解液的粘度和離子電導(dǎo)率。Jones–Dole (JD)和Debye–Hückel–Onsager (DHO)曾經(jīng)提出過兩個經(jīng)驗(yàn)公式分別是公式3和公式4:
其中,μr是相對粘度,μ是溶液粘度,μ0是純?nèi)軇┱扯龋珻是鋰鹽濃度,A、B、D是系數(shù),Λ是摩爾電導(dǎo)率,Λ0是在無限稀釋狀態(tài)下的摩爾電導(dǎo)率,S是受溶劑物理性質(zhì)和電解質(zhì)性質(zhì)影響的參數(shù),C是溶質(zhì)濃度。如果鋰鹽和溶劑的種類變化之后,經(jīng)驗(yàn)公式也需要進(jìn)行修改。對于混合體系電解液來說,公式會更加復(fù)雜。
所以,當(dāng)配置新的多元復(fù)配電解液時,電解液的性能需要試驗(yàn)來測定,而無法進(jìn)行預(yù)先估測。雖然離子電導(dǎo)率對于電池性能影響很大,但是其它因素例如SEI的形成和性能也是非常關(guān)鍵的因素,電解液在高倍率下的穩(wěn)定性、毒性等也應(yīng)該考慮到。總之,一切與實(shí)際生產(chǎn)應(yīng)用有關(guān)的因素都要考慮,然后才考慮離子電導(dǎo)率參數(shù)。
二、固態(tài)電解質(zhì)
固態(tài)電解質(zhì)與液體有機(jī)電解液相比用于鋰電池后具有更大的優(yōu)勢,例如設(shè)計(jì)簡單、封裝方便、抗沖擊抗震動性能好、耐溫度和壓力性能好、電化學(xué)穩(wěn)定性和范圍廣、安全性好等。然而,固態(tài)電解質(zhì)的離子導(dǎo)電性相對還較受限制。一般來說,固態(tài)電解質(zhì)可以分為凝膠型聚合物、無溶劑聚合物、無機(jī)晶體化合物、無機(jī)玻璃態(tài)物質(zhì)等。在無機(jī)晶體化合物內(nèi)部,鋰離子的傳導(dǎo)是因?yàn)橐苿与x子在周圍電位的能量有利位點(diǎn)之間跳躍形成的,周圍離子的運(yùn)動為移動離子提供激活能量以促使其通過晶體結(jié)構(gòu)中的通道。
聚合物電解質(zhì)的離子傳輸機(jī)制與無機(jī)晶體化合物和液態(tài)電解液的傳輸機(jī)制不同。在無溶劑的聚合物電解質(zhì)中,離子遷移率受聚合物主體材料運(yùn)動的影響。離子僅在聚合物鏈段經(jīng)歷與玻璃化轉(zhuǎn)變溫度(Tg)有關(guān)的相當(dāng)大振幅運(yùn)動時才移動。聚合物電解質(zhì)在高于玻璃轉(zhuǎn)變溫度Tg時才表現(xiàn)出快的離子電導(dǎo)率,此時聚合物電解質(zhì)主要由非晶相構(gòu)成。因此,低玻璃轉(zhuǎn)變溫度Tg的聚合物如PEO( Tg-50至-57℃)已成為無溶劑電解質(zhì)的重要聚合物主體,并且正在研究該聚合物的非晶化作為增加其離子電導(dǎo)率的方式。由于低分子量溶劑在聚合物中的擴(kuò)散以及聚合物鏈段的運(yùn)動,凝膠型聚合物電解質(zhì)表現(xiàn)出比無溶劑電解質(zhì)更快的離子傳導(dǎo)。
以PEO為例,該類聚合物的電解質(zhì)傳輸機(jī)制如上圖所示,通電以后,聚合物中非晶部分的鏈段運(yùn)動導(dǎo)致Li+的“解絡(luò)合—再絡(luò)合”過程的反復(fù)進(jìn)行而促使離子實(shí)現(xiàn)快速遷移。
在半導(dǎo)體工業(yè)中開發(fā)的基于薄膜技術(shù)的固體電解質(zhì)已經(jīng)作為固態(tài)微電池的關(guān)鍵組件被深入研究。由于合成時間長和制造過程中的高溫條件需求,為微電池開發(fā)的大多數(shù)晶態(tài)和玻璃態(tài)電解質(zhì)的成本太高。除了這些缺點(diǎn)之外,用于固態(tài)電解質(zhì)的無機(jī)材料通常含有昂貴的金屬,如Ge,Ti,Sc,In,Lu,La和Y等。由于放大和應(yīng)用大多數(shù)固態(tài)電解質(zhì)時遇到的困難,僅凝膠型聚合物電解質(zhì)在商業(yè)上取得成功。
三、離子液體電解質(zhì)
另一類被認(rèn)為是電解質(zhì)的材料是離子液體。離子液體的定義目前尚不明確,一般認(rèn)為它是完全由陽離子和陰離子組成的液體,在室溫或室溫附近呈現(xiàn)為液態(tài)的有機(jī)鹽類。離子液體具有獨(dú)特的性質(zhì),包括不可燃性,低蒸氣壓,高熱穩(wěn)定性,良好的電化學(xué)穩(wěn)定性,低毒性和高離子含量等。
通常,將離子液體分為AlCl3型離子液體、非AlCl3型離子液體和特殊離子液體三類。各種離子液體的理化性質(zhì)都可以在相關(guān)文獻(xiàn)中找到。總體而言,離子液體的粘度比液態(tài)電解質(zhì)高一至兩個數(shù)量級,因此離子電導(dǎo)率比液體電解質(zhì)的離子電導(dǎo)率低三至四個數(shù)量級。華登定律通常用于離子液體的電導(dǎo)率和粘度之間的關(guān)系,表達(dá)如下:
λi是離子種類i的離子電導(dǎo)率,μ是粘度。
因?yàn)檎扯群艽蟪潭壬先Q于這些影響因素之間的相互作用,例如范德華相互作用,構(gòu)象自由度,庫侖力和離子形狀等,科研人員在研究離子液體中離子物質(zhì)之間的相互作用上已經(jīng)付出了很多努力。除了低離子電導(dǎo)率之外,離子液體電解質(zhì)的應(yīng)用也不太可能在碳負(fù)極材料上形成SEI層,導(dǎo)致循環(huán)中的Li離子耗盡。所以,在許多情況下,離子液體需要輔助添加劑以用來作電解質(zhì)。
責(zé)任編輯:繼電保護(hù)
-
權(quán)威發(fā)布 | 新能源汽車產(chǎn)業(yè)頂層設(shè)計(jì)落地:鼓勵“光儲充放”,有序推進(jìn)氫燃料供給體系建設(shè)
2020-11-03新能源,汽車,產(chǎn)業(yè),設(shè)計(jì) -
中國自主研制的“人造太陽”重力支撐設(shè)備正式啟運(yùn)
2020-09-14核聚變,ITER,核電 -
探索 | 既耗能又可供能的數(shù)據(jù)中心 打造融合型綜合能源系統(tǒng)
2020-06-16綜合能源服務(wù),新能源消納,能源互聯(lián)網(wǎng)
-
新基建助推 數(shù)據(jù)中心建設(shè)將迎爆發(fā)期
2020-06-16數(shù)據(jù)中心,能源互聯(lián)網(wǎng),電力新基建 -
泛在電力物聯(lián)網(wǎng)建設(shè)下看電網(wǎng)企業(yè)數(shù)據(jù)變現(xiàn)之路
2019-11-12泛在電力物聯(lián)網(wǎng) -
泛在電力物聯(lián)網(wǎng)建設(shè)典型實(shí)踐案例
2019-10-15泛在電力物聯(lián)網(wǎng)案例
-
新基建之充電樁“火”了 想進(jìn)這個行業(yè)要“心里有底”
2020-06-16充電樁,充電基礎(chǔ)設(shè)施,電力新基建 -
燃料電池汽車駛?cè)雽こ0傩占疫€要多久?
-
備戰(zhàn)全面電動化 多部委及央企“定調(diào)”充電樁配套節(jié)奏
-
權(quán)威發(fā)布 | 新能源汽車產(chǎn)業(yè)頂層設(shè)計(jì)落地:鼓勵“光儲充放”,有序推進(jìn)氫燃料供給體系建設(shè)
2020-11-03新能源,汽車,產(chǎn)業(yè),設(shè)計(jì) -
中國自主研制的“人造太陽”重力支撐設(shè)備正式啟運(yùn)
2020-09-14核聚變,ITER,核電 -
能源革命和電改政策紅利將長期助力儲能行業(yè)發(fā)展
-
探索 | 既耗能又可供能的數(shù)據(jù)中心 打造融合型綜合能源系統(tǒng)
2020-06-16綜合能源服務(wù),新能源消納,能源互聯(lián)網(wǎng) -
5G新基建助力智能電網(wǎng)發(fā)展
2020-06-125G,智能電網(wǎng),配電網(wǎng) -
從智能電網(wǎng)到智能城市