鋰離子電池的正負(fù)極材料的介紹
我們經(jīng)常會(huì)看到磷酸鐵鋰,三元等專業(yè)的鋰離子電池術(shù)語,這些都是根據(jù)鋰離子電池正極材料來區(qū)分鋰離子電池的類型。相對(duì)來講,鋰離子電池的正、負(fù)極材料對(duì)電池性能的影響比較大,是大家比較關(guān)心的方面。那么,當(dāng)前市場(chǎng)上都有哪些常見的正負(fù)極材料呢?用他們做鋰離子電池,又有哪些優(yōu)缺點(diǎn)?
1.正極材料
首先,我們來看看正極材料,正極材料的選擇,主要基于以下幾個(gè)因素考慮:
1)具有較高的氧化還原反應(yīng)電位,使鋰離子電池達(dá)到較高的輸出電壓;
2)鋰元素含量高,材料堆積密度高,使得鋰離子電池具有較高的能量密度;
3)化學(xué)反應(yīng)過程中的結(jié)構(gòu)穩(wěn)定性要好,使得鋰離子電池具有長(zhǎng)循環(huán)壽命;
4)電導(dǎo)率要高,使得鋰離子電池具有良好的充放電倍率性能;
5)化學(xué)穩(wěn)定性和熱穩(wěn)定性要好,不易分解和發(fā)熱,使得鋰離子電池具有良好的安全性;
6)價(jià)格便宜,使得鋰離子電池的成本足夠低;
7)制造工藝相對(duì)簡(jiǎn)單,便于大規(guī)模生產(chǎn);
8)對(duì)環(huán)境的污染低,易于回收利用。
當(dāng)前,鋰離子電池的能量密度、充放電倍率、安全性等一些關(guān)鍵指標(biāo),主要受制于正極材料。
鈷酸鋰的商業(yè)化應(yīng)用走的最早,第一代商業(yè)化應(yīng)用的鋰離子電池就是SONY在1990年推向市場(chǎng)的鈷酸鋰離子電池,隨后在消費(fèi)類產(chǎn)品中得到大規(guī)模應(yīng)用。隨著手機(jī)、筆記本、平板電腦的大規(guī)模普及,鈷酸鋰一度是鋰離子電池正極材料中銷售量占比最大的材料。但其固有的缺點(diǎn)是質(zhì)量比容量(不等同于能量密度)低,理論極限是274mAh/g,出于正極結(jié)構(gòu)穩(wěn)定性考慮,實(shí)際只能達(dá)到理論值的50%,即137mAh/g。同時(shí),由于地球上鈷元素的儲(chǔ)量比較低,也導(dǎo)致鈷酸鋰的成本偏高,難以在動(dòng)力電池領(lǐng)域大規(guī)模普及,所以鈷酸鋰正極材料將被其他材料逐步取代。
由于穩(wěn)定性,安全性,材料合成困難等方面的缺點(diǎn),鎳酸鋰的商業(yè)應(yīng)用較少,市場(chǎng)上很少看到,這里不做論述。
錳酸鋰的商業(yè)化應(yīng)用,主要在動(dòng)力電池領(lǐng)域,是鋰離子電池一個(gè)比較重要的分支。如日產(chǎn)的leaf純電動(dòng)轎車采用了日本AESC公司的錳酸鋰離子電池,早期的雪弗蘭Volt也采用韓國LG化學(xué)的錳酸鋰離子電池。錳酸鋰的突出優(yōu)點(diǎn)是成本低,低溫性能好,缺點(diǎn)是比容量低,極限在148mAh/g,且高溫性能差,循環(huán)壽命低。所以錳酸鋰的發(fā)展有明顯的瓶頸,近年來的研究方向主要是改性錳酸鋰,通過摻雜其他元素,改變其缺點(diǎn)。
磷酸鐵鋰材料在中國熱過一陣子,一方面受美國科研機(jī)構(gòu)和企業(yè)在技術(shù)方面的帶動(dòng),另一方面受比亞迪在國內(nèi)的產(chǎn)業(yè)化推動(dòng),前幾年國內(nèi)的鋰離子電池企業(yè)在動(dòng)力電池領(lǐng)域基本都以磷酸鐵鋰材料為主。但是隨著全球各國對(duì)鋰離子電池能量密度的要求越來越高,而磷酸鐵鋰的比容量理論極限是170mAh/g,而實(shí)際上只能達(dá)到120mAh/g左右,已經(jīng)無法滿足當(dāng)前和未來的市場(chǎng)需求。此外,磷酸鐵鋰的倍率性能一般,低溫特性差等缺點(diǎn),也限制了磷酸鐵鋰的應(yīng)用。最近比亞迪搞出了一個(gè)改性磷酸鐵鋰材料,把能量密度提升了不少,還未透露具體的技術(shù)細(xì)節(jié),不知道摻雜了什么材料在里面。就產(chǎn)品應(yīng)用領(lǐng)域而言,電力儲(chǔ)能市場(chǎng)應(yīng)該是磷酸鐵鋰離子電池的一個(gè)重要市場(chǎng),相對(duì)而言,這個(gè)市場(chǎng)對(duì)能量密度不是特別敏感,而對(duì)長(zhǎng)壽命,低成本,高安全性電池的迫切需求,正是磷酸鐵鋰材料的優(yōu)勢(shì)所在。
日韓企業(yè)在近幾年大力推動(dòng)三元材料的應(yīng)用,鎳鈷錳三元材料逐漸成為市場(chǎng)的主流,國內(nèi)企業(yè)也采取跟隨策略,逐步轉(zhuǎn)向三元材料。三元材料的比容量較高,目前市場(chǎng)上的產(chǎn)品已經(jīng)可以達(dá)到170~180mAh/g,從而可以將電池單體的能量密度提高到接近200Wh/kg,滿足電動(dòng)汽車的長(zhǎng)續(xù)航里程要求。此外,通過改變?nèi)牧系呐浔?x,y的值),還可以達(dá)到良好的倍率性能,從而滿足PHEV和HEV車型對(duì)大倍率小容量鋰離子電池的需求,這也正是三元材料大行其道的原因。從化學(xué)式可以看出,鎳鈷錳三元材料綜合了鈷酸鋰(LiCoO2)和錳酸鋰(LiMn2O4)的一些優(yōu)點(diǎn),同時(shí)因?yàn)閾诫s了鎳元素,可以提升能量密度和倍率性能。
鎳鈷鋁三元材料,嚴(yán)格來說,其實(shí)算是一種改性的鎳酸鋰(LiNiO2)材料,在其中摻雜了一定比例的鈷和鋁元素(占比較少)。商業(yè)化應(yīng)用方面主要是日本的松下公司在做,其他鋰離子電池公司基本沒有研究這個(gè)材料。之所以拿來對(duì)比,是因?yàn)槎ΧΥ竺腡esla,就是使用松下公司的18650鎳鈷鋁三元電芯做電動(dòng)汽車的動(dòng)力電池系統(tǒng),并且做到了接近500公里的續(xù)航里程,說明了這種正極材料,還是有其獨(dú)特的價(jià)值。
以上僅僅是比較常見的鋰離子電池正極材料,并不代表所有的技術(shù)路線。實(shí)際上,不管是高校和科研院所,還是企業(yè),都在努力研究新型的鋰離子電池正極材料,希望把能量密度和壽命等關(guān)鍵指標(biāo)提升到更高的量級(jí)。當(dāng)然,如果要在2020年達(dá)到250Wh/kg,甚至300Wh/kg的能量密度指標(biāo),現(xiàn)在商業(yè)化應(yīng)用的正極材料都無法實(shí)現(xiàn),那么正極材料就需要比較大的技術(shù)變革,如改變層狀結(jié)構(gòu)為尖晶石結(jié)構(gòu)的固溶體類材料,以及有機(jī)化合物正極材料等,都是目前比較熱門的研究方向。
2.負(fù)極材料
相對(duì)而言,針對(duì)鋰離子電池負(fù)極材料的研究,沒有正極材料那么多,但是負(fù)極材料對(duì)鋰離子電池性能的提高仍起著至關(guān)重要的作用,鋰離子電池負(fù)極材料的選擇應(yīng)主要考慮以下幾個(gè)條件:
1)應(yīng)為層狀或隧道結(jié)構(gòu),以利于鋰離子的脫嵌;
2)在鋰離子脫嵌時(shí)無結(jié)構(gòu)上的變化,具有良好的充放電可逆性和循環(huán)壽命;
3)鋰離子在其中應(yīng)盡可能多的嵌入和脫出,以使電極具有較高的可逆容量;
4)氧化還原反應(yīng)的電位要低,與正極材料配合,使電池具有較高的輸出電壓;
5)首次不可逆放電比容量較小;
6)與電解質(zhì)溶劑相容性好;
7)資源豐富、價(jià)格低廉;
8)安全性好;
9)環(huán)境友好。
鋰離子電池負(fù)極材料的種類繁多,根據(jù)化學(xué)組成可以分為金屬類負(fù)極材料(包括合金)、無機(jī)非金屬類負(fù)極材料及金屬氧化物類負(fù)極材料。
(1)金屬類負(fù)極材料:這類材料多具有超高的嵌鋰容量。最早研究的負(fù)極材料是金屬鋰。由于電池的安全問題和循環(huán)性能不佳,金屬鋰作為負(fù)極材料并未得到廣泛應(yīng)用。近年來,合金類負(fù)極材料得到了比較廣泛的研究,如錫基合金,鋁基合金、鎂基合金、銻基合等,是一個(gè)新的方向。
(2)無機(jī)非金屬類負(fù)極材料:用作鋰離子電池負(fù)極的無機(jī)非金屬材料主要是碳材料、硅材料及其它非金屬的復(fù)合材料。
(3)過渡金屬氧化物材料:這類材料一般具有結(jié)構(gòu)穩(wěn)定,循環(huán)壽命長(zhǎng)等優(yōu)點(diǎn),如鋰過渡氧化物(鈦酸鋰等)、錫基復(fù)合氧化物等。
就當(dāng)前的市場(chǎng)而言,在大規(guī)模商業(yè)化應(yīng)用方面,負(fù)極材料仍然以碳材料為主,石墨類和非石墨類碳材料都有應(yīng)用。在汽車及電動(dòng)工具領(lǐng)域,鈦酸鋰作為負(fù)極材料也有一定的應(yīng)用,主要是具有非常優(yōu)異的循環(huán)壽命、安全性和倍率性能,但是會(huì)降低電池的能量密度,因此不是市場(chǎng)主流。其他類型的負(fù)極材料,除了SONY在錫合金方面有產(chǎn)品推出,大多仍以科學(xué)研究和工程開發(fā)為主,市場(chǎng)化應(yīng)用的比較少。
就未來的發(fā)展趨勢(shì)而言,如果能有效解決循環(huán)性能,硅基材料將可能取代碳材料成為下一代鋰離子電池的主要負(fù)極材料。錫合金,硅合金等合金類的負(fù)極材料,也是一個(gè)非常熱門的方向,將走向產(chǎn)業(yè)化。此外,安全性和能量密度較高的鐵氧化物,有可能取代鈦酸鋰(LTO),在一些長(zhǎng)壽命和安全性要求較高的領(lǐng)域,得到廣泛應(yīng)用。
接下來的內(nèi)容,我們將就鋰離子電池與能量相關(guān)的兩個(gè)關(guān)鍵指標(biāo):能量密度和充放電倍率,展開一些簡(jiǎn)短的論述。
能量密度,是單位體積或重量可以存儲(chǔ)的能量多少,這個(gè)指標(biāo)當(dāng)然是越高越好,凡是濃縮的都是精華嘛。充放電倍率,是能量存儲(chǔ)和釋放的速度,最好是秒速,瞬間存滿或釋放,召之即來揮之即去。
當(dāng)然,這些都是理想,實(shí)際上受制于各種各樣的現(xiàn)實(shí)因素,我們既不可能獲得無限的能量,也不可能實(shí)現(xiàn)能量的瞬間轉(zhuǎn)移。如何不斷的突破這些限制,達(dá)到更高的等級(jí),就是需要我們?nèi)ソ鉀Q的難題。
責(zé)任編輯:繼電保護(hù)
-
權(quán)威發(fā)布 | 新能源汽車產(chǎn)業(yè)頂層設(shè)計(jì)落地:鼓勵(lì)“光儲(chǔ)充放”,有序推進(jìn)氫燃料供給體系建設(shè)
2020-11-03新能源,汽車,產(chǎn)業(yè),設(shè)計(jì) -
中國自主研制的“人造太陽”重力支撐設(shè)備正式啟運(yùn)
2020-09-14核聚變,ITER,核電 -
探索 | 既耗能又可供能的數(shù)據(jù)中心 打造融合型綜合能源系統(tǒng)
2020-06-16綜合能源服務(wù),新能源消納,能源互聯(lián)網(wǎng)
-
新基建助推 數(shù)據(jù)中心建設(shè)將迎爆發(fā)期
2020-06-16數(shù)據(jù)中心,能源互聯(lián)網(wǎng),電力新基建 -
泛在電力物聯(lián)網(wǎng)建設(shè)下看電網(wǎng)企業(yè)數(shù)據(jù)變現(xiàn)之路
2019-11-12泛在電力物聯(lián)網(wǎng) -
泛在電力物聯(lián)網(wǎng)建設(shè)典型實(shí)踐案例
2019-10-15泛在電力物聯(lián)網(wǎng)案例
-
新基建之充電樁“火”了 想進(jìn)這個(gè)行業(yè)要“心里有底”
2020-06-16充電樁,充電基礎(chǔ)設(shè)施,電力新基建 -
燃料電池汽車駛?cè)雽こ0傩占疫€要多久?
-
備戰(zhàn)全面電動(dòng)化 多部委及央企“定調(diào)”充電樁配套節(jié)奏
-
權(quán)威發(fā)布 | 新能源汽車產(chǎn)業(yè)頂層設(shè)計(jì)落地:鼓勵(lì)“光儲(chǔ)充放”,有序推進(jìn)氫燃料供給體系建設(shè)
2020-11-03新能源,汽車,產(chǎn)業(yè),設(shè)計(jì) -
中國自主研制的“人造太陽”重力支撐設(shè)備正式啟運(yùn)
2020-09-14核聚變,ITER,核電 -
能源革命和電改政策紅利將長(zhǎng)期助力儲(chǔ)能行業(yè)發(fā)展
-
探索 | 既耗能又可供能的數(shù)據(jù)中心 打造融合型綜合能源系統(tǒng)
2020-06-16綜合能源服務(wù),新能源消納,能源互聯(lián)網(wǎng) -
5G新基建助力智能電網(wǎng)發(fā)展
2020-06-125G,智能電網(wǎng),配電網(wǎng) -
從智能電網(wǎng)到智能城市
-
山西省首座電力與通信共享電力鐵塔試點(diǎn)成功
-
中國電建公司公共資源交易服務(wù)平臺(tái)摘得電力創(chuàng)新大獎(jiǎng)
-
電力系統(tǒng)對(duì)UPS的技術(shù)要求