大電網(wǎng)靜態(tài)穩(wěn)定態(tài)勢(shì)評(píng)估的大數(shù)據(jù)融合方法
近年來,新一代智能電網(wǎng)調(diào)度技術(shù)支持系統(tǒng)實(shí)現(xiàn)了電網(wǎng)靜態(tài)和動(dòng)態(tài)信息的采集功能,隨著廣域測(cè)量系統(tǒng)(wide area measurement system,WAMS)在工程中廣泛應(yīng)用,WAMS系統(tǒng)可在時(shí)空統(tǒng)一角度且具有足夠的精度和速度測(cè)量電網(wǎng)真實(shí)運(yùn)行狀態(tài)信息,為大電網(wǎng)穩(wěn)定態(tài)勢(shì)評(píng)估帶來新的契機(jī)。
靜態(tài)穩(wěn)定態(tài)勢(shì)分析通常采用模型仿真,但是每次仿真分析前需要確定全部數(shù)學(xué)模型,參數(shù)及仿真場(chǎng)景,故計(jì)算量大,存在維數(shù)災(zāi)難,且難以計(jì)及非常規(guī)數(shù)據(jù)的影響,仍需要花費(fèi)大量時(shí)間和精力。模型法分析結(jié)果的準(zhǔn)確性取決于機(jī)理模型的準(zhǔn)確性,建模過程中的各種簡(jiǎn)化和假設(shè)使模型法的分析結(jié)果不能充分反映電網(wǎng)實(shí)際運(yùn)行狀況。此外,隨著電網(wǎng)規(guī)模擴(kuò)大、電網(wǎng)有些區(qū)域會(huì)接近輸電極限,加之大規(guī)模間歇性新能源(renewable energy systems,RES)并網(wǎng)發(fā)電大大增加了電力生產(chǎn)的不確定性和電網(wǎng)運(yùn)行困難;大規(guī)模電動(dòng)汽車(electric vehicle,EV)充放電又增加了電力負(fù)荷的隨機(jī)性,這些各個(gè)環(huán)節(jié)不確定因素及其交互影響使得電網(wǎng)穩(wěn)定行為更為復(fù)雜,傳統(tǒng)研究假設(shè)條件可能會(huì)不成立。
大數(shù)據(jù)技術(shù)近年來受到廣泛關(guān)注,它對(duì)大量多源數(shù)據(jù)進(jìn)行高速捕捉、發(fā)現(xiàn)和分析,利用經(jīng)濟(jì)的方法提取有價(jià)值的技術(shù)體系或架構(gòu)。廣義上講,大數(shù)據(jù)不僅指所涉及的數(shù)據(jù),還包含了對(duì)這些數(shù)據(jù)進(jìn)行處理和分析的理論、方法和技術(shù)。隨著我國(guó)智能電網(wǎng)建設(shè)的不斷推進(jìn)和深入,電網(wǎng)量測(cè)體系積累了大量的數(shù)據(jù),這就使得大數(shù)據(jù)分析挖掘技術(shù)在靜態(tài)穩(wěn)定態(tài)勢(shì)評(píng)估具有可行性。
目前,電網(wǎng)存在各種類型的大量仿真或?qū)崪y(cè)數(shù)據(jù),啟發(fā)人們思考如何用數(shù)據(jù)分析取代機(jī)理建模,從而提出了數(shù)據(jù)驅(qū)動(dòng)模式。然而,幾乎所有關(guān)于大數(shù)據(jù)的論文都會(huì)強(qiáng)調(diào)不同類型數(shù)據(jù)之間的融合,但卻鮮有討論如何融合。
針對(duì)以上問題,本文提出了基于隨機(jī)矩陣?yán)碚摰撵o態(tài)穩(wěn)定態(tài)勢(shì)評(píng)估方法。隨機(jī)矩陣?yán)碚撟鳛橐环N普適性的大數(shù)據(jù)分析方法,無需詳細(xì)物理模型,可綜合考慮歷史數(shù)據(jù)和實(shí)時(shí)數(shù)據(jù),具有從高維角度認(rèn)識(shí)復(fù)雜系統(tǒng)等優(yōu)點(diǎn)。隨機(jī)矩陣是對(duì)復(fù)雜網(wǎng)絡(luò)進(jìn)行統(tǒng)計(jì)分析的重要數(shù)據(jù)理論之一,通過對(duì)復(fù)雜系統(tǒng)的能譜和本征態(tài)進(jìn)行統(tǒng)計(jì)分析,揭示數(shù)據(jù)中整體的行為特征,可以從宏觀上對(duì)復(fù)雜系統(tǒng)的性質(zhì)進(jìn)行研究分析。隨機(jī)理論是近年來的研究熱點(diǎn)之一,在量子物理、金融工程、醫(yī)療等多個(gè)領(lǐng)域發(fā)揮了重要作用。文獻(xiàn)[8]首次將隨機(jī)矩陣?yán)碚撘腚娏ο到y(tǒng),提出一種全新的、通用的大數(shù)據(jù)分析架構(gòu),將其應(yīng)用于電力系統(tǒng)異常發(fā)現(xiàn);文獻(xiàn)提出一種基于隨機(jī)矩陣?yán)碚摰呐潆娋W(wǎng)運(yùn)行狀態(tài)相關(guān)性分析方法;文獻(xiàn)提出基于高維隨機(jī)矩陣描述的WAMS量測(cè)大數(shù)據(jù)建模與分析方法;文獻(xiàn)提出一種基于高維隨機(jī)矩陣大數(shù)據(jù)分析模型的輸變電設(shè)備關(guān)鍵性能評(píng)估方法;文獻(xiàn)提出一種隨機(jī)矩陣在全球能源互聯(lián)網(wǎng)中的應(yīng)用框架。然而,大數(shù)據(jù)技術(shù)在電力系統(tǒng)中的應(yīng)用鮮有涉及如何對(duì)靜態(tài)穩(wěn)定態(tài)勢(shì)進(jìn)行評(píng)估的介紹。高維隨機(jī)矩陣?yán)碚撟鳛樾屡d的大數(shù)據(jù)分析方法,能將各類數(shù)據(jù)集成到高維矩陣中,從概率和統(tǒng)計(jì)角度研究矩陣的特性和數(shù)據(jù)分布情況。
本文提出了一種電網(wǎng)靜態(tài)穩(wěn)定態(tài)勢(shì)評(píng)估的大數(shù)據(jù)融合方法,利用歷史數(shù)據(jù)和實(shí)時(shí)數(shù)據(jù)建立了隨機(jī)矩陣模型。在此基礎(chǔ)上,提出了兩種基于隨機(jī)矩陣?yán)碚摰臉O限譜分布函數(shù),用來研究矩陣特性和數(shù)據(jù)分布情況。進(jìn)而,利用平均譜半徑實(shí)現(xiàn)靜態(tài)穩(wěn)定態(tài)勢(shì)評(píng)估。最后,利用IEEE39節(jié)點(diǎn)系統(tǒng)算例仿真,驗(yàn)證了所提方法的有效性。
1大數(shù)據(jù)融合方法
1.1基于隨機(jī)矩陣?yán)碚摰拇髷?shù)據(jù)融合方法
電力系統(tǒng)實(shí)際運(yùn)行中,發(fā)生穩(wěn)定破壞性故障相對(duì)罕見,導(dǎo)致實(shí)測(cè)數(shù)據(jù)缺乏失穩(wěn)數(shù)據(jù),難以進(jìn)行數(shù)據(jù)挖掘,通常采用仿真計(jì)算來獲得樣本。連續(xù)潮流法是電網(wǎng)靜態(tài)(電壓)穩(wěn)定分析的有效工具,可用于模擬實(shí)際電網(wǎng)中發(fā)電負(fù)荷區(qū)域性增長(zhǎng)的遠(yuǎn)景和規(guī)劃[17-18]。本文進(jìn)行分析挖掘的數(shù)據(jù)采用基于負(fù)荷增長(zhǎng)的連續(xù)潮流法(ContinuationPowerFlow,CPF)進(jìn)行仿真得到大量的樣本數(shù)據(jù);由于在數(shù)據(jù)采集和傳輸過程中會(huì)產(chǎn)生隨機(jī)噪聲,電力系統(tǒng)存在小幅度隨機(jī)擾動(dòng)。因此,本文在連續(xù)潮流仿真數(shù)據(jù)基礎(chǔ)上添加高斯白噪聲,以此數(shù)據(jù)來模擬電網(wǎng)實(shí)際運(yùn)行獲得的數(shù)據(jù)。
隨機(jī)矩陣?yán)碚撝袧u進(jìn)收斂性要求矩陣的維數(shù)趨近無窮,在處理實(shí)際工程問題時(shí),當(dāng)維數(shù)從幾十到幾百時(shí),也能觀察到相當(dāng)精確的漸進(jìn)收斂結(jié)果[15]。在矩陣構(gòu)造時(shí),對(duì)行列元素通過調(diào)整來獲得最優(yōu)的行列比值。
對(duì)于電力網(wǎng)絡(luò),選擇nn個(gè)節(jié)點(diǎn)的量測(cè)數(shù)據(jù)作為空間樣本,每個(gè)節(jié)點(diǎn)有kk個(gè)狀態(tài)變量,構(gòu)成NN個(gè)變量,其中N=n×k。
在采樣時(shí)刻titi,每個(gè)節(jié)點(diǎn)的量測(cè)數(shù)據(jù)可以構(gòu)成一個(gè)列向量:
x(ti)=[x1,x2,?,xN]Tx(ti)=[x1,x2,?,xN]T(1)
將每個(gè)節(jié)點(diǎn)采樣時(shí)刻的量測(cè)數(shù)據(jù)按照時(shí)間序列排序,可形成如下矩陣:
XN×T=[x(t1),x(t2),?,x(ti),?]∈CN×TXN×T=[x(t1),x(t2),?,x(ti),?]∈CN×T(2)
該矩陣即為大數(shù)據(jù)分析的數(shù)據(jù)源,這些數(shù)據(jù)按照時(shí)間順序采樣,不同節(jié)點(diǎn)的電氣特征量具有空間特性,將兩者結(jié)合起來則構(gòu)成具有時(shí)空特性的數(shù)據(jù)源。
1.2靜態(tài)穩(wěn)定態(tài)勢(shì)評(píng)估的輸入數(shù)據(jù)
電網(wǎng)的運(yùn)行狀態(tài)由多種狀態(tài)變量表征,比如電網(wǎng)各個(gè)節(jié)點(diǎn)的電壓和相角、發(fā)電機(jī)注入有功功率和無功功率、負(fù)荷有功功率和無功功率、支路電流等。電網(wǎng)中各元件間的拓?fù)潢P(guān)系及相互作用力必然蘊(yùn)含于廣域時(shí)空量測(cè)信息中。此外,電網(wǎng)的運(yùn)行狀態(tài)還受到各種電氣因素和非電氣因素的影響。電氣因素包括分布式電源出力、各類故障和擾動(dòng)等;非電氣因素包括溫度、濕度、風(fēng)速等氣候因素和社會(huì)經(jīng)濟(jì)因素等。在大數(shù)據(jù)分析時(shí),根據(jù)具體的研究目的和數(shù)據(jù)資源選取量測(cè)數(shù)據(jù)進(jìn)行數(shù)據(jù)源隨機(jī)矩陣的構(gòu)建。
在采樣時(shí),由于不同數(shù)據(jù)的采樣頻率可能不同,可以認(rèn)為采樣頻率低的數(shù)據(jù)類型在采樣間隔內(nèi)數(shù)值相等。在矩陣分析時(shí),要將所有元素進(jìn)行標(biāo)準(zhǔn)化處理,其目的是去量綱化和數(shù)值歸一化,從而使得各個(gè)指標(biāo)具有可比性。
在研究靜態(tài)電壓穩(wěn)定性時(shí),由于電壓失穩(wěn)是負(fù)荷驅(qū)動(dòng)的,側(cè)重研究負(fù)荷和電壓數(shù)據(jù),電壓穩(wěn)定性問題就是負(fù)荷的穩(wěn)定性問題。故而本文在研究靜態(tài)穩(wěn)定態(tài)勢(shì)評(píng)估時(shí),選取每個(gè)節(jié)點(diǎn)的節(jié)點(diǎn)電壓數(shù)據(jù)和所有負(fù)荷節(jié)點(diǎn)的有功功率數(shù)據(jù)構(gòu)造矩陣。為了實(shí)現(xiàn)數(shù)據(jù)的實(shí)時(shí)分析,采用文獻(xiàn)[13]中提出的實(shí)時(shí)分離窗技術(shù),該技術(shù)可以從數(shù)據(jù)源中獲取當(dāng)前時(shí)刻和歷史時(shí)刻的采樣量測(cè)數(shù)據(jù),實(shí)時(shí)分離窗的寬度為Tw,在采樣時(shí)刻ti,獲得的數(shù)據(jù)矩陣為:
XN×Tw(ti)=[x(ti−Tw+1),x(ti−Tw+2),?,x(ti)]XN×Tw(ti)=[x(ti−Tw+1),x(ti−Tw+2),?,x(ti)](3)
該技術(shù)也可以對(duì)噪聲數(shù)據(jù)進(jìn)行平滑處理。
2隨機(jī)矩陣?yán)碚摶驹?/strong>
2.1隨機(jī)矩陣?yán)碚?/strong>
隨機(jī)矩陣?yán)碚撚袃蓚€(gè)基本概念,經(jīng)驗(yàn)譜分布函數(shù)和極限譜分布函數(shù)。對(duì)于任意特征值為實(shí)數(shù)的n×nn×n維隨機(jī)矩陣A,稱函數(shù)
FA(x)=1n∑i=1nI(λAi≤x)FA(x)=1n∑i=1nI(λiA≤x)(4)
為矩陣A的經(jīng)驗(yàn)譜分布函數(shù)(empiricalspectrumdistribution,ESD),這里λAiλiA為矩陣A的特征根,i=1,?,ni=1,?,n,I(•)表示指示性函數(shù)。我們把經(jīng)驗(yàn)譜分布函數(shù)的極限稱為極限譜分布函數(shù)。經(jīng)驗(yàn)譜分布函數(shù)是隨機(jī)的,但通常極限譜分布函數(shù)是非隨機(jī)的,如圓率,半圓率、M-P率(Marchenko-PaturLaw)和圓環(huán)率。
對(duì)于高維數(shù)據(jù)源X矩陣,其樣本協(xié)方差陣如下式所示:
Sn=1n(∑i=1nxix′i)=1nXX′Sn=1n(∑i=1nxix′i)=1nXX′(5)
可求得其經(jīng)驗(yàn)譜分布函數(shù)FSn(x)FSn(x),通過對(duì)其進(jìn)行Stieltjes變換[19-21],利用Stieltjes變換法,可以把對(duì)隨機(jī)矩陣經(jīng)驗(yàn)譜分布函數(shù)研究轉(zhuǎn)換為對(duì)隨機(jī)矩陣逆的跡的研究,由此求得極限譜分布函數(shù)。
2.2M-P率和圓環(huán)率
利用隨機(jī)矩陣?yán)碚撛u(píng)估靜態(tài)穩(wěn)定態(tài)勢(shì)重點(diǎn),是根據(jù)極限譜分布函數(shù)的變化規(guī)律來評(píng)估靜態(tài)穩(wěn)定裕度。下文將介紹兩種極限譜分布函數(shù)M-P率和圓環(huán)率[12,22-23]。
采用M-P率觀測(cè)譜分布,M-P率其極限譜密度如式(6)。
式中,a=σ2(1−c√)2a=σ2(1−c)2,b=σ2(1+c√)2b=σ2(1+c)2這里c為維數(shù)與樣本量的比值,σ2σ2為刻度參數(shù),σ2=1σ2=1。通過對(duì)連續(xù)潮流輸入數(shù)據(jù)預(yù)處理后,應(yīng)用實(shí)時(shí)分離窗技術(shù),選取不同狀態(tài)可以看出樣本協(xié)方差譜分布直方圖和M-P率曲線如圖1所示。
圖1樣本協(xié)方差矩陣譜分布
圖中展示了隨著負(fù)荷的不斷增長(zhǎng),樣本協(xié)方差矩陣譜分布直方圖變窄變長(zhǎng)。可以明顯看出電力系統(tǒng)發(fā)生了變化。
由于輸入數(shù)據(jù)的高維矩陣X中所含元素均為實(shí)數(shù),通過利用酉矩陣U對(duì)X的樣本協(xié)方差矩陣進(jìn)行處理后可將特征值映射到復(fù)平面。樣本協(xié)方差矩陣X經(jīng)過奇異化處理后得到等效矩陣Xu=UXX′−−−−√Xu=UXX′[24-25],U為haar矩陣,滿足XuXTu=XXTXuXuT=XXT。對(duì)該矩
-
2017年云計(jì)算市場(chǎng)營(yíng)收增長(zhǎng)24%,達(dá)1800億美元
2018-01-10市場(chǎng) -
人人稱道的云計(jì)算,市場(chǎng)發(fā)展仍存幾大障礙
-
當(dāng)春運(yùn)遇上云計(jì)算
2018-01-10當(dāng)春運(yùn)遇上云計(jì)算
-
憑業(yè)績(jī)說話 中天科技位居2017中國(guó)電子信息百?gòu)?qiáng)榜前列
-
華為、中興海外遭難 都因我國(guó)這個(gè)器件存“短板”?
-
施耐德電氣的數(shù)字化轉(zhuǎn)型中 HR在做什么?
-
國(guó)家標(biāo)準(zhǔn)《智能電網(wǎng)調(diào)度控制系統(tǒng)技術(shù)規(guī)范第二部分:術(shù)語(yǔ)》已發(fā)布并實(shí)施
-
盤點(diǎn)|2017年實(shí)施的電力相關(guān)行業(yè)標(biāo)準(zhǔn)(DL、NB)
-
大電網(wǎng)靜態(tài)穩(wěn)定態(tài)勢(shì)評(píng)估的大數(shù)據(jù)融合方法